

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

200401580

COMBINED SCIENCE

0653/43

Paper 4 Theory (Extended)

October/November 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 24 pages. Blank pages are indicated.

DC (LK/CB) 194260/4 © UCLES 2020

[Turn over

1 (a) Fig. 1.1 shows red blood cells and white blood cells.

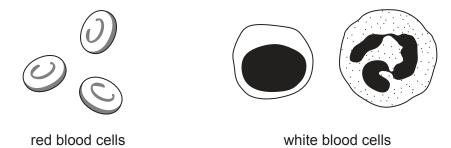
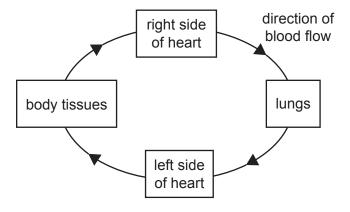
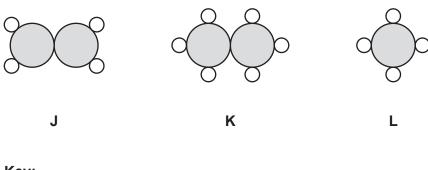


Fig. 1.1

(i)	Describe how the structure of a red blood cell is adapted for transporting oxygen.	
(ii)	State two functions of white blood cells.	
	1	
	2	[2]

(b) Fig. 1.2 is a flowchart to show the circulation of blood in humans.




Fig. 1.2

(i)	Explain why the circulation in Fig. 1.2 is described as a double circulation.	
(ii)	Describe two advantages of a double circulation.	ני
	1	
	2	
	2	••
		21

During exercise, the breathing rate and heart rate increase.
Describe how these two increases cause an increase in the amount of oxygen reaching the exercising muscles.
increase in breathing rate
increase in heart rate
[2]
Smoking tobacco can cause cancer.
Name two other diseases caused by smoking tobacco.
1
2[2]
[Total: 10]

2 Compounds J, K and L are hydrocarbons.

The structures of one molecule of compounds J, K and L are shown in Fig. 2.1.

Key:

- O hydrogen
- carbon

Fig. 2.1

(a)	Stat	e which compound, J , K or L , is ethene.	
	Ехр	lain your answer.	
	com	pound	
	expl	anation	
			[1]
(b)	Ethe	ene is made by cracking gas oil.	
	(i)	Describe what is meant by <i>cracking</i> .	
			[1]
	(ii)	State one condition required for cracking.	
			[1]

(c) Draw a dot-and-cross diagram of the molecule of compound ${\bf K}.$

Show the outer shell electrons only.

	[2]
<i>(</i> 1)	
(d)	In the presence of a catalyst, one molecule of compound ${\bf L}$ reacts with one molecule of steam to produce carbon monoxide and hydrogen.
	Construct the balanced symbol equation for this reaction.
	[2]
(e)	State two compounds that are produced during the complete combustion of compound K .
	1
	2
	[2]
	[Total: 9]

3 Fig. 3.1 shows a climber using a safety rope to climb a rock face.

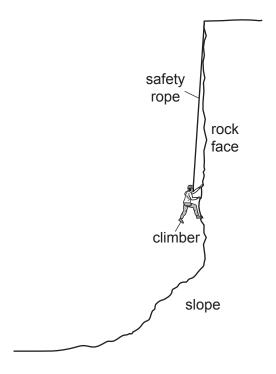


Fig. 3.1

(a) The climber has a weight of 820 N.

The gravitational field strength g is $10 \,\mathrm{N/kg}$.

(i) Calculate the mass of the climber.

mass =	 kg	[1]

(ii) The climber moves a vertical distance of 12 m up the rock face.

Calculate the change in gravitational potential energy (G.P.E.) of the climber.

change in G.P.E. = J [2]

(b) A small piece of rock falls from the rock face, lands on the slope below and rolls to a stop.

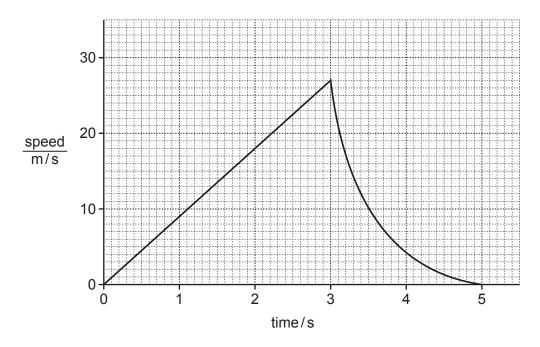


Fig. 3.2

(i) Use Fig. 3.2 to calculate the initial acceleration of the piece of rock.Give the units of your answer.

acceleration =	units	[3

- (ii) On Fig. 3.2, draw an **X** on the graph to show when the piece of rock lands on the slope. [1]
- (iii) Describe the motion of the piece of rock between 3.0 s and 5.0 s.

[1]

(c) A scientist investigates the extension of the safety rope.

The scientist tests the safety rope with a load of $820\,\mathrm{N}$ (Test 1) and with a load of $898\,\mathrm{N}$ (Test 2).

Fig. 3.3 shows the test results.

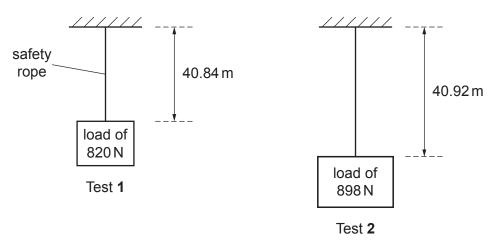


Fig. 3.3 (not to scale)

The scientist uses a safety rope with an original length of 40.00 m.

(i) Determine the extension of the safety rope in Test 1.

extension = m	[1]
Use Fig. 3.3 to show that the safety rope obeys Hooke's Law in Test 1 and Test 2 .	
	[2]
[Total:	11]

BLANK PAGE

			plain why a pregnant woman should increase her intake of vitamin D.	
				 2]
	(b)	(i)	State one symptom of a person who suffers from a deficiency of iron in the diet.	11
		(ii)	State one food that is a good source of iron.	ני
			[1]
	(c)		4.1 shows the percentage of the adult population with obesity in different countries in and in 2016.	n
Key 20	000		2016	
perce of a popu with o	adul ulati	lt on	40	
			A B C D E F G H country	
			Fig. 4.1	
		(i)	State how obesity is an example of not eating a balanced diet.	
			[1]
		(ii)	State the letter of the country with the greatest increase in the percentage of adults wit obesity from 2010 to 2016.	-
			country =[1]

(d) Fig. 4.2 is a diagram of part of the alimentary canal.

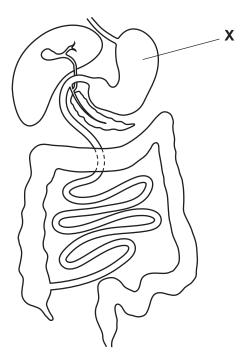


Fig. 4.2

(i)	State the pH conditions inside organ X .
	[1]
(ii)	Describe how these conditions aid digestion.
	[1]
	[Total: 8]

(a) Magnesium is an element in Group II and Period 3 of the Periodic Table.

	The	Periodic Table is shown on p24.
	The	nucleon number of an atom of magnesium is 24.
	(i)	Deduce the number of neutrons and the number of protons in the nucleus of a magnesium atom.
		number of neutrons =
		number of protons =[2]
	(ii)	Describe the relationship between the number of outer shell electrons and the metallic character of elements across a period.
		[1]
(b)	Mag	nesium chloride contains magnesium ions, $\mathrm{Mg^{2+}}$, and chloride ions, $\mathrm{C}\mathit{l^{-}}$.
	Ded	uce the formula of magnesium chloride.
		formula =[1]
(c)	Mag	nesium is produced by the electrolysis of molten magnesium chloride.
	(i)	Explain why magnesium chloride must be molten and not solid for electrolysis.
		[2]
	(ii)	Describe what happens to a magnesium ion, Mg ²⁺ , at the cathode during electrolysis.
		Use ideas about electrons in your answer.
		[2]

© UCLES 2020 0653/43/O/N/20

5

(d)	Magnesium chloride is made in the reaction between magnesium and dilute hydrochloric acid. The temperature of the reaction mixture increases.
	This reaction is exothermic because it releases thermal energy.
	Explain why this reaction releases thermal energy.
	Use ideas about bond breaking and bond forming in your answer.
	[2]
	[Total: 10]

6 Fig. 6.1 shows a space telescope for detecting gamma radiation from distant stars.

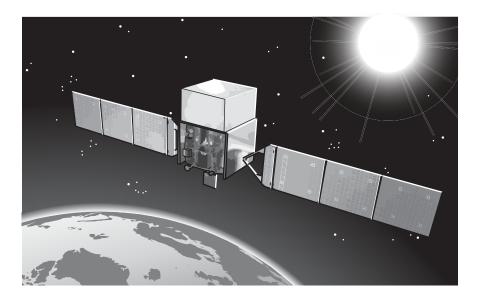


Fig. 6.1

(a) Fig 6.2 shows the position of gamma radiation in the electromagnetic spectrum.

On Fig 6.2, write

- a tick (✓) underneath the radiation with the lowest frequency
- a cross (X) underneath the radiation that causes sunburn.

gamma radiation	X-rays	ultraviolet	visible light	infra-red	microwaves	radio waves

Fig. 6.2

[2]

- **(b)** A star that emits gamma radiation is billions of kilometres away from Earth.
 - (i) The gamma radiation received by the space telescope today gives astronomers information about the star as it was in the past.

Explain why it does **not** give astronomers information about the star as it is today.

(ii) The astronomer measures the wavelength of the gamma radiation red	Jeive	ve(O:
--	-------	-----	----

The wavelength of the gamma radiation is 2.0×10^{-14} m.

The speed of the gamma radiation is $3.0 \times 10^8 \text{ m/s}$.

Calculate the frequency of the gamma radiation.

(c) Fig. 6.3 shows three penguins on a clear, sunny day.

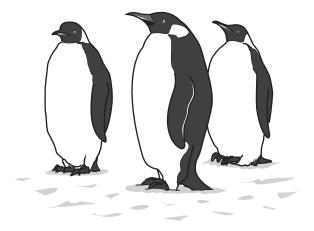


Fig. 6.3

Radiation from the Sun heats some parts of the penguins' bodies more than other parts.

(i)	Name the entertheating effective	electromagnetic ct.	radiation	from	the	Sun	that	is	mainly	responsible	for	this
												[1]

(ii) Suggest which parts of the penguins' bodies are heated m	ore than other parts
---	----------------------

Give a reason for your answer.	
	[4]

[Total: 7]

7 Fig. 7.1 shows a mistletoe plant growing on a tree branch. The mistletoe plant is attached to the branch by structures that grow deep into the wood.

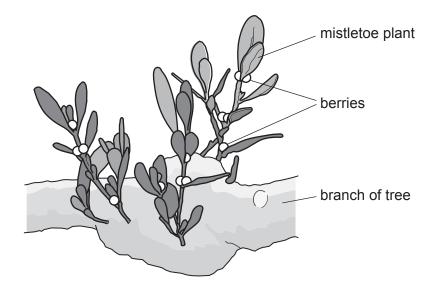


Fig. 7.1

(a) (i)	The mistletoe obtains water and mineral ions from inside the branch.
	State the part of a flowering plant that has this function.
	[1]
(ii)	Name the mineral ion that the mistletoe must absorb to make chlorophyll.
	[1]
(iii)	Explain how a deficiency of the mineral needed to make chlorophyll affects the mistletoe plant.
	[3]

(b)	Sma	all birds such	as thr	ushes fe	ed on	the	berries of	the	mistletoe pl	ant.		
	Cats	s feed on thru	ushes.	Hawks	feed o	n ca	ats and thr	ushe	es.			
	(i)	Construct o	ne cor	nplete fo	od ch	ain ı	using this i	nfor	mation.			
												[2]
	(ii)	Explain wh consumers.	y the	hawks	can	be	described	as	secondary	consumers	and	tertiary
												[2]
											[Total: 9]

8	(a)	Copper chloride is made when copper oxide reacts with dilute hydrochloric acid
		The equation for the reaction is shown.

$${\rm CuO} + {\rm 2HCI} \ \rightarrow \ {\rm CuCl}_2 + {\rm H}_2{\rm O}$$

	Ехр	lain why warm hydrochloric acid reacts faster than cold hydrochloric acid.	
	Use	e ideas about particles and collisions in your answer.	
			[2]
(b)	Cop	oper is a transition element.	
	Des	scribe one property of copper that is not a property of Group I metals.	
			[1]
(c)	Chle	orine gas is made by the electrolysis of aqueous copper chloride.	
	(i)	Damp litmus paper is used to test for chlorine.	
		State the positive result.	
			[1]
	(ii)	Explain why chlorine is used in the treatment of water supplies.	
			[1]

(d) Copper ions, Cu²⁺, can be detected using chromatography.

Fig. 8.1 shows a chromatogram of a solution containing copper ions.



Fig. 8.1

Use the measuring scale in Fig. 8.1 to calculate the $R_{\rm f}$ value for the copper ions.

9 Fig. 9.1 shows an extractor fan in the wall of a bathroom. The extractor fan is used to remove damp (wet) air from the bathroom.

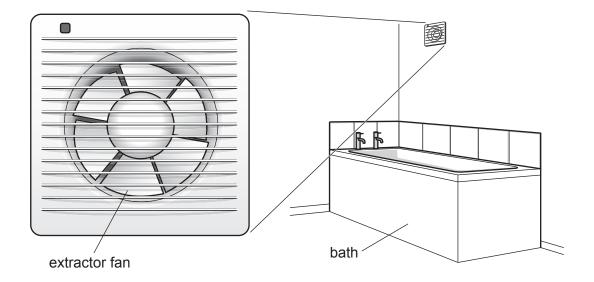


Fig. 9.1

- (a) Compare a gas to a liquid in terms of:
 - the distances between the molecules
 - the forces between the molecules
 the motion of the molecules.

 เรา

(b) Hot water at the surface of the bath evaporates into water vapour. This makes the air in the bathroom damp.

Suggest how using the fan to extract damp air from the bathroom affects the evaporation of water from the bath.

Give a reason for your answer.

(c) The bathroom light and the electric motor for the extractor fan are controlled by a single switch. A fuse protects the circuit.

Fig. 9.2 shows the circuit diagram.

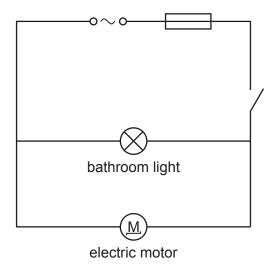


Fig. 9.2

The electric motor for the extractor fan has a power rating of 12W. The current in the motor is 0.080A.

(i) Calculate the potential difference across the motor.

potential difference = V [2]

(ii) The power rating of the bathroom light is 18 W.

The fuse in the circuit needs replacing.

Show that a fuse rated at 0.5A is a suitable replacement.

[Total: 9]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

ß
_
ē
Ε
7
Ш
of
0
Ø
=
\mathbf{u}
Ta
()
ĕ
~
0
Ē
Φ
Д.
The
~
亡
_

		2	¥.	helium 4	10	Ne	neon 20	18	Ą	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	=				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	At	astatine -			
	5				8	0	oxygen 16	16	S	sulfur 32	34	Se	elenium 79	52	_ е	ellurium 128	84	Ьо	olonium -	116		amorium -
																						live
	>									phosphorus 31												
	≥				9	O	carbon 12	14	S	silicon 28	32	Ge	germaniun 73	20	S	119 119	82	Pb	lead 207	114	Εl	flerovium
	=				2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> 1	thallium 204			
											30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	C	copernicium
											29	D O	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium
dn											28	Z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Group											27	ပိ	cobalt 59	45	R	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		_	I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
					1						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
				Key	atomic number	loc	SSI				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium
						atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	op O	dubnium
							relat				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	弘	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium
	_				3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	Ŧ	francium -

71	lutetium 175	103	۲	lawrencium	I
⁶ X	ytterbium 173	102	%	nobelium	ı
69 Tm	thulium 169	101	Md	mendelevium	1
88 7	erbium 167	100	Fm	ferminm	I
67 CH	holmium 165	66	Es	einsteinium	I
99	dysprosium 163	86	Ç	californium	1
65 Th	terbium 159	97	Ř	berkelium	_
²⁹ D	gadolinium 157	96	Cm	curium	_
63 F.	europium 152	92	Am	americium	1
Sm	samarium 150	94	Pu	plutonium	1
19 PA	promethium -	93	ď	neptunium	-
09 Z	neodymium 144	92	\supset	uranium	238
59 P	praseodymium 141	91	Ра	protactinium	231
88 e	cerium 140	06	드	thorium	232
57	lanthanum 139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).